TEA CO₂ Laser Induced Photoreactions of Ethylene, Chloroethylenes and Chloroethanes

Keiichi NAGAI and Mikio KATAYAMA

Department of Pure and Applied Sciences, College of General Education,

The University of Tokyo, Komaba, Meguro-ku, Tokyo 153

(Received June 15, 1977)

TEA CO_2 laser induced chemical reactions of ethylene, chloroethylenes and chloroethanes have been investigated. Since these compounds have absorptions at wavelengths of 10.6 or 9.6 μ m band of the CO_2 laser, strong excitation of the molecular vibration gives rise to an infrared photochemical reaction. In chlorine derivatives, the cleavage of the C–Cl bond by the laser irradiation appears to initiate decompositions of these materials. The final products were mainly brought about by molecular elimination of HCl, H_2 , or Cl_2 . The present results demonstrate that the CO_2 laser induced reactions differ form their thermal reactions.

Since the development of infrared lasers, a considerable number of investigations on infrared photochemical reactions induced by continuous wave (CW) or transverse excited atomospheric (TEA) CO2 laser irradiation have been reported. 1-4) Braun and Tsang⁵⁾ have observed TEA CO2 laser induced chemical reactions for isobutyl and ethyl chlorides, bromides and iodides. For all except the iodides the reaction took place via the molecular elimination of hydrogen halides. With respect to the iodides, cleavage of the C-I bond competed with the elimination of hydrogen halide. The infrared photochemical reactions of ethylene, chloroethylenes, chloroethanes and mixtures of these compounds with SF₆ or H₂ induced by TEA CO₂ laser irradiation have been observed. In those cases, the vibrationally excited molecules took direct part in chemical reactions. Irradiation by infrared laser pulse gives rise to an elevation of the specific vibrational temperature of molecule, keeping the translational temperature almost unchanged. Therefore, in this respect the infrared laser induced reactions differ from the thermally induced ones, although the reaction products are similar.

Experimental

The TEA CO₂ laser constructed and used was a double discharge type with three pairs of Rogowski electrodes of 60 cm length each.6) The cavity length was about 200 cm, being formed by a 20 m radius aluminum-coated concave mirror and a flat uncoated germanium output ethalon. Under ordinary conditions, the simultaneous oscillation of multiple lines of multi-modes was observed, and the strongest line was P(20) of the 10.6 µm band. The oscillations of P(14)—P(22) and R(16) of this band with less than 1/10 of the intensity of the P(20) line were also observed. The power output was about 1 J with a pulse duration of 100 ns; its repetition rate was about 1 Hz. The absorption cell of about 3 cm length was inserted into the laser cavity for a selective oscillation of appropriate lines of the laser. When SF₆ gas of 150 Torr was introduced into the cell, the oscillation of the 9.6 µm band was accomplished, and its power output was slightly less than that of the 10.6 µm band. The oscillation of R branch of the 9.6 µm band was obtained by using C₂H₃Cl gas of about 150 Torr.

Reaction cells made of duralmine were used. One had the dimensions of 100 mm length and inner diameter of 30 mm, and the other was 50 mm length and 20 mm diameter. The reaction cell was closed by two KCl windows permitting passage of the laser beam. The sample gas in the reaction

cell was irradiated by the laser pulse focused with germanium lens of $f=5~\rm cm$; the diameter of the focal spot was $\approx 0.5~\rm mm$. The peak power of the laser at the focus was more than $1~\rm GW/cm^2$, but its irradiation did not show any appreciable temperature elevation of the sample gas. The products of the infrared photoreaction were examined by infrared absorption. No appreciable differences of products were found with changing cell dimensions.

Results and Discussion

For a pressure of sample gas higher than 50 Torr, the irradiation by high power laser gives rise to a dielectric breakdown. This produces an avalanche of electrons, and the reactions caused by the breakdown have been shown to be the same as those initiated by an electric discharge.⁸⁾ Therefore, the infrared laser induced reactions have been observed in the pressure range of 10—50 Torr, where the reaction was mainly infrared-photochemical. Although the dielectric breakdown was unobserved at these pressures, the emission of visible luminescence was observed around the focus of the lens.

Typical results, including the experimental conditions, are presented in Table 1. The products listed in this table were obtained after an irradiation of 30—60 min. A more detailed examination of the results is now given.

Ethylene. The reaction product of C_2H_4 was C_2H_2 and the yield was proportional to the pressure of ethylene in the range of 10—50 Torr. The reaction is one of elimination of the H_2 molecule. When the mixture of C_2H_4 and H_2 (20 Torr: 20 Torr) was irradiated, the partial pressure of the product C_2H_2 was found to be 1.5 Torr, which is almost the same order of magnitude as that of the pure C_2H_4 . The addition of H_2 did not produce any detectable change in the rate of decomposition of ethylene.

Chloroethylene. The main reaction of the chloroethylenes was the elimination of hydrogen chloride from the initial reagent. Under the irradiation conditions, C₂H₃Cl at 22 Torr produced C₂H₂ at 2.2 Torr. The presence of C₂HCl was not detected in the products, indicating the difficulty of eliminating H₂ compared with that of HCl. It is reasonable to predict this since the energy required for the elimination of H₂ is estimated to be 75 kcal/mol from the energies of C-H and H-H bonds, while the energy required for the elimina-

Table 1. Products of CO_2 laser induced photochemical reactions

Reagents, pressures	Reaction products, partial pressures	Irradiation conditions
C_2H_4 (20 Torr)	C ₂ H ₂ (1.8 Torr)	10.6 μm P, 3000 shots
C_2H_3Cl (22 Torr)	C_2H_2 (2.2 Torr)	10.6 μm P, 3000 shots
$CCl_2=CH_2$ (10 Torr)	$C_2HCl~(1.5~Torr) \ C_2H_2~(0.5~Torr)$	9.6 μm P+R, 1500 shots ^{a)}
C ₂ HCl ₃ (18 Torr)	C_2Cl_2 (5 Torr) C_2HCl (0.5 Torr)	10.6 μm P, 3000 shots
$\begin{array}{c} \mathrm{C_2HCl_3} \ (20 \ \mathrm{Torr}) \\ +\mathrm{H_2} \ (20 \ \mathrm{Torr}) \end{array}$	$\begin{array}{c} C_2H_2 \ (2.7 \ Torr) \\ CCl_2=CH_2 \ (0.7 \ Torr) \\ C_2HCl \ (0.1 \ Torr) \end{array}$	10.6 µm P, 3000 shots
C ₂ H ₅ Cl (20 Torr)	C_2H_4 (5 Torr) C_2H_2 (1 ToJr)	10.6 µm P, 3000 shots
$\frac{\mathrm{CHCl_2-CH_3}}{(10\ \mathrm{Torr})}$	$\begin{array}{c} \mathrm{C_2H_2Cl} \ (1.7 \ \mathrm{Torr}) \\ \mathrm{C_2H_2} \ (1 \ \mathrm{Torr}) \end{array}$	10.6 µm P, 1500 shots ^{a)}
CHCl ₂ -CH ₃ (10 Torr)	C_2H_3Cl (4.4 Torr) C_2H_2 (1.4 Torr)	9.6 μm P, 1500 shots ^{a)}
$CHCl_2-CH_3$ (10 Torr) $+SF_6$ (1 Torr)	C ₂ H ₃ Cl (1.5 Torr)	10.6 μm P, 1500 shots ^{a)}
$\begin{array}{c} \mathrm{CH_{2}Cl}\mathrm{-CH_{2}Cl} \\ \mathrm{(20\ Torr)} \end{array}$	$C_2H_3Cl~(<0.1~Torr)$	10.6 μm P, 3000 shots
$\mathrm{CH_{3}\text{-}CCl_{3}}\ (20\ \mathrm{Torr})$	$\text{Cl}_2\text{C=CH}_2~(<0.1~\text{Torr})$	10.6 μm P, 3000 shots
CHCl ₂ -CH ₂ Cl (11 Torr)	Cl ₂ C=CH ₂ (1.1 Torr) CHCl=CHCl (trans) (0.3 Torr)	10.6 µm P, 3000 shots
	CHCl=CHCl (cis) (0.5 Torr)	

a) A smaller reaction cell was used.

tion of HCl is about 50 kcal/mol. 5,7) Since this molecule absorbs at a wavelength of 9.6 μm , the 9.6 μm laser photochemical reaction was also observed. However, the production of C_2H_2 was slightly less than that by the 10.6 μm irradiation.

The ν_8 vibrational mode of $\text{Cl}_2\text{C=}\text{CH}_2$ is infrared active and the absorption can be observed at the 9.6 μ m R branch of the CO_2 laser. Hence, the reaction was induced by the irradiation of the TEA CO_2 laser with the R branch of 9.6 μ m radiation. The reaction products were C_2HCl and C_2H_2 at a ratio 5:1. The following processes may be suggested for the production of the C_2H_2 molecule.

- l) The infrared laser irradiation brings about a cleavage of the C–Cl bond and creates a ${\rm ClC=CH_2}$ radical.
- 2) The transfer of an H atom produces a HClC=CH radical.
- 3) The cleavage of the C–Cl bond of the radical HClC=CH by the laser irradiation yields the $\rm C_2H_2$ molecule

The process assumed above is equivalent to the elimination of a Cl₂ molecule, following the scrambling of the H atom.

Since Cl₂C=CH₂ has no absorption at the wavelength of 10.6 μm TEA CO₂ laser, its irradiation produced

Table 2. TEA CO₂ laser induced chemical reaction of Cl₂C=CH₂

	Direct excitation	SF ₆ sensitized reaction
Sample	Cl ₂ C=CH ₂ (14 Torr)) + SF ₆ (1 Torr)
Laser line	9.6 μm R	10.6 µm P
Relative laser	power 1	≈1.5
Relative absorption (4 n		≈ 5
Reaction rate	>6	1

no reaction in the pure sample. However, the SF₆ sensitized reaction of Cl₂C=CH₂ was induced by the 10.6 µm laser irradiation, but the quantity of products was too small for complete identification. The results of the direct and sensitized reactions are listed in Table 2. The absorption coefficients of the mixture of Cl₂C= CH₂ and SF₆ (14 Torr: 1 Torr) were measured by using the laser with 4 mJ output. The observed value at 10.6 µm was 5 times as large as the absorption coefficient at 9.6 µm. Although the irradiated laser power of 10.6 µm was about 1.5 times as large as the power of 9.6 µm band, the reaction rate of the direct process was larger by an order of magnitude. In the mixture of SF₆ and Cl₂C=CH₂, the v₃ mode of SF₆ was excited successively to its higher vibrational levels by the incident 10.6 µm laser. The vibrational energies of SF₆ transferred to the vibrationally excited levels of Cl₂C= CH₂, giving rise to the dissociation of this molecule. It should be noted that any decomposition of SF₆ molecule in the present mixture was not detected. observed results in Table 2 indicate that the direct laser excitation of the v₆ vibration of Cl₂C=CH₂ (CH rocking mode) accelerates the reaction rate significantly.

In a previous paper the TEA CO₂ laser induced isomerization and decomposition of ClHC=CHCl has been reported.⁸⁾ The observed reactions promoted by the direct excitation or SF₆ sensitization using TEA CO₂ laser are listed in Table 3. The absorption coefficient of the mixture of ClHC=CHCl (trans) and SF₆ (10 Torr: 1 Torr) at 10.6 µm is 50 times as large as that of the pure substance, but the reaction rate of the sensitized excitation is only 6 times as fast as the rate of the direct excitation. Although the main reaction was the trans-cis isomerization in both cases, the production of C₂H₂ and C₂HCl were also observed in the

Table 3. TEA CO₂ laser induced chemical reaction of ClHC=CHCl (trans)

	Direct excitation	SF ₆ sensitized reaction
Sample	ClHC=CHCl (10 Torr)	ClHC=CHCl (10 Torr) + SF ₆ (1 Torr
Laser line	10.6 µm P	10.6 µm P
Relative absorption coefficient (4 mJ)	1	≈50
Relative reaction rate	1	6
Ratio of products C ₂ H ₂ /C ₂ HCl	0.6	0

case of direct excitation. In the SF_6 sensitized reaction, only the C_2HCl molecule was obtained, indicating that the reaction resembles the pyrolysis of ClHC=CHCl.⁹ The infrared photoreaction induced by the direct excitation of ClHC=CHCl differs then from the thermal one.

The frequency of the v_{12} vibrational mode of ClHC= CCl₂ coincides with the 10.6 µm TEA laser, and the irradiation of 3000 shots produced 5 Torr of C₂Cl₂ and 0.5 Torr of C₂HCl from 18 Torr of this molecule. The ratio of the products, C2Cl2 and C2HCl, may be given by the activation energies of the elimination of HCl and Cl2 molecules. Goodall and Howlett reported that the thermal reaction products of ClHC=CCl₂ were C₆Cl₆ and HCl.10) Although the presence of C2Cl2 molecules has not been detected in the pyrolysis of ClHC=CCl₂, the C₆Cl₆ molecule may be formed at higher translational temperatures from activated C2Cl2 molecules, which are presumably produced by the elimination of hydrogen chloride from the parent molecules. Appreciable amounts of C₆Cl₆ were not detected in the laser induced reaction products, suggesting that elevation of the translational temperature is insufficient to allow the reaction 3 C₂Cl₂→C₆Cl₆. It is evident from our observation that the infrared laser induced reaction of ClHC=CCl₂ is significantly different from that of the pyrolysis. Furthermore, in the 10.6 µm laser induced reaction of the mixture of ClHC=CCl₂ and H₂ (20 Torr: 20 Torr) the products were C₂H₂ of 2.7 Torr, Cl₂C=CH₂ of 0.7 Torr and C₂HCl less than 0.1 Torr, but C2Cl2 was not detected in contrast to the case of pure ClHC=CCl₂. The major products obtained from the 10.6 µm laser irradiated mixture of ClHC=CCl₂ and D₂ were CHD=CCl₂, CD₂=CCl₂, and H₂C=CCl₂. The productions of C₂D₂, C₂HD, and a trace of C₂H₂ were also observed. These results seem to indicate that the CO₂ laser irradiation gives rise to a cleavage of C-Cl bond of ClHC-CCl₂ molecule.

Chloroethanes. The reaction products of C₂H₅Cl at 25 Torr were C₂H₄ and C₂H₂ with partial pressure of 5 and 1.5 Torr respectively. At less than 25 Torr, the quantities of the products were proportional to the initial pressures of the samples. When increased to 40 Torr, the partial pressures of the products, C₂H₄ and C₂H₂, reached 6 and 3 Torr respectively. Assuming that the infrared laser irradiated C₂H₅Cl gives rise to the production of C₂H₄ alone and the reaction product C2H2 of the present experiment is brought about by the irradiation of C₂H₄ by the same laser, then the partial pressure of C2H2 must be less than 1/5 of the really observed value. Therefore, we may conclude that the major part of C₂H₂ must be directly, and almost simultaneously, produced from C₂H₅Cl by the CO₂ laser irradiation. Barton and Howlett have reported that the pyrolysis of this material gives rise to the production of C₂H₄ but not to noticeable amounts of C₂H₂.¹¹⁾ These experimental results demonstrate that the mechanism in both reactions is different.

Infrared absorption of $\text{Cl}_2\text{HC-CH}_3$ was observed at wavelengths of the 9.6 μm P, R and 10.6 μm R bands of the CO_2 laser, but not at the 10.6 μm P band. Hence,

the irradiation of the R branch of 10.6 µm laser pulse produced C₂H₃Cl of 1.7 Torr and C₂H₂ of 1 Torr from 10 Torr of Cl₂HC-CH₃. The irradiated products with the P branch of the 9.6 μm band were C_2H_3Cl of 4.4 Torr and C₂H₂ of 1.4 Torr. Since the production of C₂H₂ is almost of the same order as that of C₂H₃Cl, only a small part of C2H2 may be assumed to be produced by the laser induced reaction of C2H3Cl which is given from Cl₂HC-CH₃ by the 9.6 or 10.6 μm R infrared photodissociation. This is because the yield of C₂H₂ from the laser induced reaction of C₂H₃Cl is less than 10% of the parent molecule. The $9.6 \mu m$ R laser irradiation produced 1.2 Torr of C₂H₃Cl and 0.3 Torr of C₂H₂ from 10 Torr of Cl₂HC-CH₃. Since the C₂H₃Cl molecule does not absorb in the 9.6 µm R line, C₂H₂ in the present observation must be directly produced from $\text{Cl}_2\text{HC--CH}_3$ by the 9.6 μm R laser irradiation. The experimental results obtained by Barton and Howlett indicate that C2H2, the thermal decomposition product of Cl₂HC-CH₃, is only 3% of the major pyrolysis product C₂H₃Cl,¹¹⁾ suggesting the different mechanisms between the pyrolysis and the infrared laser induced reaction.

The infrared photochemical decomposition of CHCl₂-CH₂Cl was also investigated. The decomposition products were cis- and trans-CHCl=CHCl and CCl₂=CH₂ in a concentration ratio of 0.5:0.3:1.1. The pyrolysis of CHCl₂-CH₂Cl has been investigated by Williams¹²⁾ and by Teramoto et al.,13) and they have proposed both processes-radical chain and unimolecular reactionsfor the decomposition. The ratio of the decomposition products H₂C=CCl₂ and ClHC=CHCl was found to be 0.7. Teramoto et al. have also confirmed that the product H₂C=CCl₂ decreased when the radical chain reaction was inhibited. In the infrared laser induced reaction, we obtained a value 1.4 for the ratio of the products, H₂C=CCl₂ and ClHC=CHCl. From our experimental results it may be concluded that the infrared laser induced reaction of CHCl2-CH2Cl is mainly promoted by the radical reaction.

Translational and Vibrational Temperatures. Recently the impulsive opto-acoustic effect has been reported. This gives rise to a temperature change in a certain gas by the absorption of the CO₂ laser pulse.¹⁴⁾ When the infrared laser pulse is absorbed by the gas, the population of relevant vibrational levels deviates from the thermal equilibrium for the short duration of the laser pulse. The energy supplied by the laser pulse as an increment of the vibrational energy is finaly transformed into translational energy of the molecule by the vibrational-translational relaxation, giving rise to elevation of the translational temperature. When the pressure of gas is 20 Torr, about 10 ms after irradiation the translational temperature of the molecules decreases to the initial value. This is caused by the dissipation of the translational energy to the cell wall or other surroundings.

In the present study of the laser induced reaction, the translational temperature increase of sample gas may be observed only in a short duration of about 10 ms. Ambartzumian *et al.*¹⁵⁾ have estimated that the temperature increase of ClHC=CHCl by the TEA CO₂ laser

irradiation was less than 350 °C which gave the maximum temperature of the gas at about 650 °C. Furthermore, they observed that the gas was kept at around 650 °C only for a short duration of 10^{-4} s. Under these conditions thermal reaction was assumed to be negligible. The same discussion may be applied in our case. In the present study, the temperature increase of sample gas by the irradiation of 3000 laser pulses was assumed to be negligible. Therefore, the energy supplied by the laser provided the elevation of vibrational temperature which gave rise to the infrared photochemical reaction. The experimental results support the present assumption that the thermal and infrared laser reactions are not the same.

The infrared laser dissociation of SF_6 molecules was understood on the assumption that the molecules are excited to the true continuum of the levels above the dissociation limit through the exciattion of quasicontinuum of the vibrational levels. From the measurement of dissociation thresholds of SF_6 , almost 20 photons/molecule were deposited by the ultrashort laser pulse, implying a vibrational temperature of $T{=}1800$ K.¹⁶)

The numbers of photons needed for dissociation of molecules in the present investigation are in the order of 20—40, which depends upon the molecules. Since the threshold power for molecular dissociation was unobserved in the present case, the vibrational temperature at the threshold could not be determined, even if it could be defined. However, the number of normal modes and the process of the laser dissociation may be almost the same as those of SF₆. The vibrational temperature at around the dissociation threshold may be an order of 2000 K.

Conclusion

The TEA CO₂ laser induced chemical reactions of ethylene, chloroethylenes and chloroethanes have been observed. The results demonstrate that the reactions are caused by multiple steps or multiple absorptions of the infrared photons, following the elimination of hydrogen or hydrogen chloride molecules, or by the cleavage of the C–Cl bond. Furthermore, the experimental results indicate that the products and the reac-

tion mechanisms are somewhat different from those of thermal reactions. It is rather difficult to elucidate the complete mechanism of the infrared laser induced photoreaction from the present observations, since its mechanism seems to vary with molecules. However, the detailed studies on the reaction of the individual substances will give information on the reactions of molecules whose vibrations of a certain mode are highly excited.

This research was supported partly by the Grant-in-Aid from the Ministry of Education.

References

- 1) N. G. Basov, E. P. Markin, A. N. Oraevskii, A. V. Pankratov, and A. N. Skachkov, *JETP Lett.*, **14**, 165 (1971).
- 2) A. Yogev, R. M. J. Loewenstein, and D. Amar, J. Am. Chem. Soc., **94**, 1091 (1972).
- 3) M. P. Freeman, D. N. Travis, and M. F. Goodman, J. Chem. Phys., **60**, 231 (1974).
- 4) A. Yogev and R. M. J. Loewenstein, J. Am. Chem. Soc., **95**, 8487 (1973).
- 5) W. Braun and W. Tsang, Chem. Phys. Lett., 49, 354 (1976).
- 6) H. J. Seguin, K. Manes, and J. Tulip, Rev. Sci. Instr. 43, 1134 (1972).
- 7) L. Pauling, "The Nature of Chemical Bond," Cornell Univ. Press, Ithaca, N. Y. (1960).
- 8) K. Nagai and M. Katayama, Chem. Phys. Lett., 51, 329 (1977).
- 9) A. M. Goodall and K. E. Howlett, J. Chem. Soc., 1956, 2640; ibid., 1956, 3092.
- 10) A. M. Goodall and K. E. Howlett, J. Chem. Soc., **1954**, 2640.
- 11) D. H. R. Barton and K. E. Howlett, J. Chem. Soc., **1949**, 165.
 - 12) R. J. Williams, J. Chem. Soc., 1953, 113.
- 13) K. Teramoto, M. Kitabatake, and T. Onouchi, Kogyo Kagaku Zasshi, 67, 50 (1964).
- 14) T. Aoki and M. Katayama, Jpn. J. Appl. Phys., 10, 1303 (1971); H. Aung, K. Nagai, and M. Katayama, J. Phys. Soc. Jpn., 37, 186 (1974).
- 15) R. V. Ambartzumian, N. V. Chekalin, V. S. Doljikov, V. S. Letokhov, and V. N. Lokman, J. Photochem., 6, 55 (1976—1977).
- 16) J. G. Black, E. Yablonovitch, N. Bloembergen, and S. Mukamel, *Phys. Rev. Lett.*, **38**, 1131 (1977).